Detectors

Particle Physics
 Toni Baroncelli

Year 2023

Content (and Disclaimer)

This lecture on detectors will not cover

- the mechanisms of particle detection
- Assembly modern detectors

Forward:

A modern experiment has to measure

- All charged and neutral articles produced in scattering events: number of particles, their momentum, if possible identify them
- Event topology, total energy, momentum-balance or momentumimbalance

This cannot be done by a single detector \rightarrow integrate several detectors into detector systems \rightarrow experiments

This lecture will give general point of view: how to assemble detectors into experiments at Colliders. Some of the recent past and some of present experiments will be described with some detail.

Fixed target geometry

"Magnet spectrometer"

Limited $d \Omega+$ easy access

Collider Geometry
" 4π multi purpose detector"

$$
\sim \text { Full d } \Omega+\sim \text { no access }
$$

Designing a 4π Collider Experiment

the end-cap (forward / backward part) it consists of disks that are perpendicular to the beam line.

The experiment (== assembly of many detectors) 'should':

- Be capable of measuring known physics processes but also unexpected new physics;
- Be as hermetic as possible;
- Measure momentum of all charged particles
- Measure energy of all hadrons and electrons;
- Filter muons using a large amount of material and measure its momentum;
- Be capable of identifying particles (mass and charge)
- Reconstruct primary and secondary vertices
- Have excellent triggering performance and sustain with the rate of interactions;
- The position of all the different detectors should be known with high accuracy.

Choosing a B-Field Configuration

solenoid

- Bending in the transverse plane
Large homogenous field inside coil
- weak opposite field in return yoke
- Size limited (cost)
- rel. high material budget
- Bending in the longitudinal plane
- Rel. large fields over large volume
- Rel. low material budget (air toroid)
- non-uniform field \rightarrow measure!
- complex structure

Solenoids Vs Toroids

magnet

- Rel. large fields over large volume
- Rel. low material budget
- Size limited (cost)
- rel. high material budget

Type Experiment		B-Field (T)		Cold/ Warm	Diameter (m)	Length (m)
S	DELPHI	1.2	C	5.2	7.4	
S	L3	0.5	W	11.9	11.9	
S	CMS	4.0	C	5.9	12.5	
S	ATLAS (ID)	2.0	C	2.5	5.8	
T	ATLAS (μ, barrel)	0.5	C	$9.4 / 20$	24.3	
T	ATLAS (μ, end-cap)	1.0	C	$1.7 / 10.7$	5	

- non-uniform field
- complex structure

Time Laps of Physics

A modern experiment should be "capable of ... unexpected new physics (generally indicated with NP)"

The Higgs case @ LHC experiments.

- coupling to different particles as a function of the (unknown) mass were known \rightarrow cross section and decay rates could be computed and simulated for different mass values
- LHC Experiments were checked at the time of the project to be well capable to detect Higgs decays in a large mass interval.

Time Laps of Physics - continued

A modern experiment at a collider should be "capable of measuring known physics processes but also unexpected new physics (generally indicated with NP)".

There is a delay of ~ 20 years between the time an experiment is conceived / designed to the time is goes into operation (~ 10 years of project ~ 10 years of construction for present experiments). (Find the money!)

What if after the 'no-return point' some new discovery or theory development changes the landscape?

The basic design cannot change beyond some limit after some time and in theory the risk of constructing a 'poor' experiment exists.

However:

- Modern experiments are extremely versatile and have a detection potential that is very large
- The experience of the past indicates that New Physics (NP) occupies 'large masses’
- Look for high energy leptons, jets, missing energies

Pre-LHC situation : simulation

10^{2}	$\int \mathrm{L} \mathrm{dt}=30 \mathrm{fb}^{-1}$ (no K-factors) ATLAS	
	SM predictions in different Higgs decay channels vs Higgs mass	

10

Time Laps of Technology (1990 - 2000)

Table 1. Typical detector characteristics.			
	Accuracy (rms)	Resolution Time	Dead Time
Detector Type	10 to $150 \mu \mathrm{~m}$	1 ms	50 ms
Bubble chamber	$300 \mu \mathrm{~m}$	$2 \mu \mathrm{~s}$	100 ms
Streamer chamber	$\geq 300 \mu \mathrm{~m}^{b . c}$	50 ns	200 ns
Proportional chamber	50 to $300 \mu \mathrm{~m}$	2 ns	100 ns
Drift chamber	$1 \mu \mathrm{~m}$	150 ps	10 ns
Scintillator	$2.5 \mu \mathrm{~m}$	e	e
Emulsion			
Silicon strip			

PDG. 1990 edition

Table 28.1: Typical resolutions and deadtimes of common detectors. Revised September 2009.

Detector Type	Accuracy (rms)	Resolution Time	Dead Time
Bubble chamber	10-150 $\mu \mathrm{m}$	1 ms	$50 \mathrm{~ms}^{a}$
Streamer chamber	$300 \mu \mathrm{~m}$	$2 \mu \mathrm{~s}$	100 ms
Proportional chamber	${ }^{50-100} \mu \mathrm{~m}^{\text {b,c }}$	2 ns	200 ns
Drift chamber	$50-100 \mu \mathrm{~m}$	2 ns $^{\text {d }}$	100 ns
Scintillator	-	$100 \mathrm{ps} / n^{e}$	10 ns
Emulsion	$1 \mu \mathrm{~m}$	-	-
Liquid argon drift [7]	$\sim 175-450 \mu \mathrm{~m}$	$\sim 200 \mathrm{~ns}$	$\sim 2 \mu \mathrm{~s}$
Micro-pattern gas detectors [8]	30-40 $\mu \mathrm{m}$	$<10 \mathrm{~ns}$	20 ns
Resistive plate chamber [9]	$\lesssim 10 \mu \mathrm{~m}$	$1-2 \mathrm{~ns}$	-
Silicon strip	pitch/(3 to 7) ${ }^{f}$	g	g
Silicon pixel	$2 \mu \mathrm{~m}^{h}$	g	g

PDG. ~2010 edition

Comparison between typical detectors characteristics in 1990 and 2010

Accuracy ($\mu \mathrm{m}$) Time Resolution						
$\stackrel{\sim}{\square}$	Year	Streamer chamber	Proportional chamber	Drift chamber	RPC	Micro-pattern gas detectors
O	1990	300	>300 50 ns	50-300	-	-
2	2010	300	50-100 2 ns	50-100	$<10 n s$	30-40

Detectors are also chosen and planned for use in experiments ~ 1 decade or more before the start of data taking

- Chose detectors at the frontier of technology or (more often) detectors in R\&D phase \rightarrow optimise while constructing
- Expected duration of future experiments >30 years!
- Long term planning for upgrade and / or replacement of technologies (increase of luminosity, radiation damage)

And of SC Magnets used in Experiments

Table 34.10: Progress of superconducting magnets for particle physics detectors.
Radius of curvature of a charged particle in a B field $\rightarrow p$

Experiment	Laboratory	$\begin{gathered} B \\ {[\mathrm{~T}]} \end{gathered}$	Radius [m]	Length [m]	Energy [MJ]	X / X_{0}	$\begin{array}{r} E / M \\ {[\mathrm{~kJ} / \mathrm{kg}]} \end{array}$	1987-2011
TOPAZ*	KEK	1.2	1.45	5.4	20	0.70	4.3	
CDF*	Tsukuba/Fermi	1.5	1.5	5.07	30	0.84	5.4	
VENUS*	KEK	0.75	1.75	5.64	12	0.52	2.8	
AMY*	KEK	3	1.29	3	40	\dagger		
CLEO-II*	Cornell	1.5	1.55	3.8	25	2.5	3.7	
ALEPH*	Saclay/CERN	1.5	2.75	7.0	130	2.0	5.5	1989-2000
DELPHI*	RAL/CERN	1.2	2.8	7.4	109	1.7	4.2	
ZEUS*	INFN/DESY	1.8	1.5	2.85	11	0.9	5.5	-902-2007
H1*	RAL/DESY	1.2	2.8	5.75	120	1.8	4.8	1992-2007
BaBar*	INFN/SLAC	1.5	1.5	3.46	27	\dagger	3.6	
D0*	Fermi	2.0	0.6	2.73	5.6	0.9	3.7	
BELLE*	KEK	1.5	1.8	4	42	\dagger	5.3	
BES-III	IHEP	1.0	1.475	3.5	9.5	\dagger	2.6	
ATLAS-CS	ATLAS/CERN	2.0	1.25	5.3	38	0.66	7.0	
ATLAS-BT	ATLAS/CERN	1	4.7-9.75	526	1080	(Toro		
ATLAS-ET	ATLAS/CERN	1	0.825-5.35	5	2×250	(Toro		
CMS	CMS/CERN	4	6	12.5	2600	\dagger	12	
Sid**	ILC	5	2.9	5.6	1560	\dagger	12	> 2035
ILD**	ILC	4	3.8	7.5	2300	\dagger	13	
SiD**	CLIC	5	2.8	6.2	2300	\dagger	14	
ILD**	CLIC	4	3.8	7.9	2300	+		
FCC**		6	6	23	54000	\dagger	12	

[^0]Super-conducting magnets are used for the momentum measurement of charged tracks (curvature):

$$
\frac{\sigma\left(p_{T}\right)}{p_{T}} \propto \frac{1}{B}
$$

$>$ A factor of 4 in B gives a factor 4 better relative resolution in p_{T}
> Magnets used in experiments are the largest structure / infrastructure of an experiment
> You may replace (part of the) detectors
> Magnets in experiments have to last for ~ 30 to 40 y

A 4π Collider Experiment: the Real Life

A 4π hermetic experiment is inaccessible, like a ship in a bottle.

Interventions at the LHC are planned since the construction and opening / intervening / closing back takes ~ 2 y and the coordinated work of a large number of engineers and technicians. The periods of stop are called 'LS' Long Shutdowns.

LHC / HL-LHC Plan

General Overview

General Overview

Detector component	Required resolution	η coverage		
		Measurement	Trigger	
Non destructive				
measurements				

General Overview

Position	Name	Purpouse
Innermost	Vertex Detector	Measure charged tracks as close as possible to beam pipe; reconstruct primary and secondary vertices of heavy flavours decays
Inner	Tracking Detectors	Measure charged tracks with a large lever arm
Middle	EM Calorimeters	Measure the energy of electrons and photons
Middle	Hadron Calorimeters	Measure the energy of both charged and neutral hadronic particles
Outer	Muon Spectrometer	Measure the momentum of penetrating particles \rightarrow muons

Position	Name	Hadrons ${ }^{ \pm}$	Hadrons ${ }^{0}$	Photons	$e^{ \pm}$	$\mu^{ \pm}$
Innermost	Vertex Detector	\checkmark			∇	\checkmark
Inner	Tracking Detectors	∇			∇	∇
Middle	EM Calorimeters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Middle	Hadron Calorimeters	\checkmark	\checkmark			\checkmark
Outer	Muon Spectrometer		Penetration limit			\checkmark

Basic Measurements: Summary

Type of Measurement	Quantity measured	Detector	Position in Experiment
Non destructive (~light detectors in ~vacuum or in gas)	Trajectory of charged particles close to interaction point	Vertex detectors, Si detectors (excellent spatial resolution \& rad-hard)	Cylinders with radii ~ 10/20 cm
	Radius of curvature of charged particles in magnetic field	Inner Detectors, typically Si or gaseous detectors	Cylinders in barrel, disks in end-caps. Radially out of Vertex Detectors
Destructive (detectors made of heavy materials)	Energy of em particles (electrons \& photons)	EM calorimeters ~ Lead sandwiched with energy detectors	Cylinders in barrel, disks in end-caps. Radially out of Inner Detectors
	Energy of hadronic particles (charged \& neutral)	Hadron Calorimeters: $\mathrm{Fe} / \mathrm{Cu}$ sandwiched with energy detectors	Cylinders in barrel, disks in end-caps. Radially out of Inner Detectors
Mixed	Radius of curvature of charged particles emerging from EM \& HCAL calorimeters	Muon detectors: tracking detectors, typically gaseous detectors	Cylinders in barrel, disks in end-caps. At the outmost position

Glossary

	Definition	Measurement	Comment
Efficiency	probability that a detector gives a signal when a particle traverses it	measured using a beam of known particles or using simulation	
Response time	time that the detector takes to form an electronic signal after the arrival of the particle	Test beams	during this time, a second event may not be recorded
Dead time	time between the passage of a particle and the moment at which the detector is ready to record the passage of the next particle	Test beams	The length of the signal, the electronics used, and the recovery time of the detector influence the dead time
Spatial resolution	precision with which the passage of a charged particle is located in space	Test beams	
Energy resolution	possibility of a detector to distinguish two close energies	"test beam" with particles of known energy	The energy resolution is the half-width of the energy distribution

Charged Particles Detectors

Particle Data Group: https://pdg.|bl.gov/2020/reviews/contents_sports.htm
Table 34.1: Typical resolutions and deadtimes of common charged particle
detectors. Revised November 2011.

Detector Type	Intrinsinc Spatial Resolution (rms)	Time Resolution	Dead Time
Resistive plate chamber	$\lesssim 10 \mathrm{~mm}$	$1 \mathrm{~ns}\left(50 \mathrm{ps}^{a}\right)$	-
Streamer chamber	$300 \mu \mathrm{~m}^{b}$	$2 \mu \mathrm{~s}$	100 ms
Liquid argon drift [7]	$\sim 175-450 \mu \mathrm{~m}$	$\sim 200 \mathrm{~ns}$	$\sim 2 \mu \mathrm{~s}$
Scintillation tracker	$\sim 100 \mu \mathrm{~m}$	$100 \mathrm{ps} / n^{c}$	10 ns
Bubble chamber	$10-150 \mu \mathrm{~m}$	1 ms	$50 \mathrm{~ms}{ }^{d}$
Proportional chamber	$50-100 \mu \mathrm{~m}^{e}$	2 ns	$20-200 \mathrm{~ns}$
Drift chamber	$50-100 \mu \mathrm{~m}$	$2 \mathrm{~ns}{ }^{f}$	$20-100 \mathrm{~ns}$

a For multiple-gap RPCs. ${ }^{\mathrm{b}} 300 \mu \mathrm{~m}$ is for 1 mm pitch (wirespacing $/ \sqrt{ } 12$).
${ }^{\mathrm{c}} \mathrm{n}=$ index of refraction.
${ }^{\text {a Multiple pulsing time. }}$
e Delay line cathode readout can give \AA A $\} 150$ $\mu \mathrm{m}$ parallel to anode wire.
${ }^{f}$ For two chambers.
9 The highest resolution (" 7 ") is obtained for small-pitch detectors $(.25 \mu \mathrm{~m})$ with pulse-height-weighted center finding. ${ }^{h}$ Limited by the readout electronics [8].

Combined Measurements

Complex observables need the combination of different detectors

- Total event energy, $E_{\text {tot }}$ and event momentum balance $p_{\text {tot }}$; the difference ($\mathrm{E}_{\mathrm{CM}}-\mathrm{E}_{\text {tot }}$) gives the energy carried by undetected particles (neutrinos + ?) and the vectorial difference ($0-p_{\text {tot }}$) gives the direction of undetected particles (neutrinos + ?)
- Transverse event energy, as above but only in the transverse plane (E_{CM} is not known in hadronic colliders)
- Combined momentum of muons (Inner Detector + Muon Spectrometer)
- Shape of showers in EM and Hadron calorimeters to distinguish hadrons from electrons and photons
- Associate showers with charged tracks extrapolated to the entrance of calorimeters
- Identify showers not associated to any charged particle (\rightarrow neutral EM or hadronic particle)
- Reconstruct jets

	p of charged tracks	Energy of all particles	Identify photons electrons	Identify muons	Associate tracks \& showers	Jets	$E_{\text {tot }}$ \& $p_{\text {tot }}$
ID	∇		∇	∇	∇	∇	∇
EM-calo		∇	∇	∇	V	∇	∇
H-Calo		V		V	V	V	V
μ-spec	∇			∇			∇

Measurement of Momentum p in a B Field

- Non-destructive measurement \rightarrow ionization energy losses (det. elements) are << p
- Tracking detectors are ~perpendicular to the trajectory of the charged track
- Multiple position measurement along the trajectory \rightarrow the curvature \rightarrow momentum

Measurement of Momentum p

Measurement error
of single point δx

Momentum is determined by measuring the radius of curvature in magnetic field $p \propto \frac{1}{\rho}$.
In practice what is measured is the sagitta 's'

High p_{T}

High $\mathrm{p}_{\mathrm{T}} \rightarrow$ small sagitta

Low $\mathrm{p}_{\mathrm{T}} \rightarrow$ large sagitta

Measuring Physical Quantities

The component of p_{T} perpendicular to the direction of B is given by

$$
\frac{p}{e}=B \cdot \rho \rightarrow \quad \mathrm{p}_{\mathrm{T}}=0.3 \cdot \mathrm{q} \cdot \mathrm{~B}(\mathrm{l}) \cdot \rho \rightarrow \frac{1}{\mathrm{p}_{\mathrm{T}}}=\frac{1}{\rho \cdot B(l) \cdot 0.3 \cdot q}
$$

$$
\sin \left(180-90-\frac{\theta}{2}\right)=\cos \left(\frac{\theta}{2}\right)
$$

with units GeV , Tesla, meters. q is the charge of the particle, r is the radius of curvature and I is the position along the trajectory.

If we consider the triangle enclosed by ' $\mathrm{l} / 2^{\prime}, \rho-\mathrm{s}$ and ρ we can write the relation

$$
\begin{aligned}
& (\rho-s)^{2}+(l / 2)^{2}=\rho^{2} \\
& \rho \cdot \cos \left(\frac{\theta}{2}\right)=\rho-s \rightarrow s=\rho \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right) \\
& \text { for small } \frac{\vartheta}{2} \text { we expand } \cos \left(\frac{\theta}{2}\right) \approx 1-\theta^{2} / 8 \\
& s=\rho \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right) \approx \rho \cdot \theta^{2} / 8
\end{aligned}
$$

Measurement of Momentum in B Field

$$
\begin{aligned}
& s=\rho \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right) \approx \rho \cdot \theta^{2} / 8 \\
& \theta \approx \frac{l}{\rho} \rightarrow s=\rho \cdot \frac{l^{2}}{\rho^{2} \cdot 8}=\frac{l^{2}}{\rho \cdot 8}
\end{aligned}
$$

From the slide before

$$
\frac{1}{\mathrm{p}_{\mathrm{T}}}=\frac{1}{\rho \cdot B(s) \cdot 0.3 \cdot q}
$$

Two ways to measure the sagitta:
The example shown on this figure refers to a VERY low momentum charged track, in practice the sagitta is always much smaller than the radius of curvature

$$
s=\rho \cdot \frac{l^{2} \cdot 0.3 \cdot B(l) \cdot q}{p_{T} \cdot 8}
$$

- Using measurements inside the B field (this example), standard way in modern experiments with Inner Detectors inside a solenoid \rightarrow circle that best describes the trajectory that best passes through the measurement points \rightarrow fit
- Using measurements done outside the magnetic field, in this case the direction of the track before and after the B field region

Error on p_{T}

Simplified example measurement with 3 points $x_{1,2,3}$:

$$
\sqrt{3 / 2}=\sqrt{1^{2}+1 / 2^{2}+1 / 2^{2}}
$$

$$
s=x_{2}-\frac{x_{1}+x_{3}}{2} \rightarrow \frac{\sigma\left(p_{T}\right)}{p_{T}}=\frac{\sigma(s)}{s}=\frac{\sqrt{3 / 2} \cdot \sigma_{x}}{s}=\frac{\sqrt{3 / 2} \cdot \sigma_{x} \cdot 8 p_{T}}{0.3 \cdot B(l) \cdot l^{2}}
$$

A more general formula has been derived for N equidistant measurements (R.L. Gluckstern, NIM 24 (1963) 381) :

$$
\frac{\sigma\left(p_{T}\right)}{p_{T}}=\frac{\sigma_{\chi} \cdot p_{T}}{0.3 \cdot B(l) \cdot l^{2}} \cdot \sqrt{\frac{720}{N+4}} \text { for } \mathrm{N} \geq \sim 10
$$

The relative resolution on the measurement of p_{T} depends

- on the precision of the single measurement and
- linearly on p_{7} : it worsen with increasing momentum. This is qualitatively intuitive if one considers that the curvature becomes larger (and the sagitta smaller) when p_{T} increases.
- On the inverse of square root of the number N of measurements

Important effect: the multiple scattering.
Charged particles undergo a large number of small deflections when passing through matter

Multiple Scattering Impact on p_{T}

Rad.Length(cm) = Rad.Length(g/cm²) * density
The angle of deflection of the charged particle with respect to the initial direction, $\theta_{\text {plane }}$, after traversing a layer of depth ℓ of a material with radiation length X_{0} can be approximated with

$$
\theta_{\text {plane }}=\left(14 \frac{\mathrm{MeV}}{p \beta} \bar{c}\right) \sqrt{l / X_{0}}
$$

Figure 27.8: Quantities used to describe multiple Coulomb scattering. The particl is incident in the plane of the figure.

Even though the material of the Inner Detectors is kept as small as possible, the walls, the cables and services cumulate some material than has an impact of the reconstruction of p_{T}. The relative effect is ~

$$
\frac{\delta p_{n}}{p_{n}}=\frac{\delta \theta}{\theta}=\frac{14 \mathrm{MeV}}{\beta c 0.3 \int B(\ell) d \ell}\left[\frac{\ell}{X_{o}}\right]^{1 / 2} \rightarrow \begin{aligned}
& \rightarrow \text { no } \mathrm{p}_{\mathrm{T}} \\
& \text { dependence }
\end{aligned}
$$

The two effects (detector resolution and effect of multiple scattering have to be combined quadratically):

$$
\frac{\delta p_{T}}{p_{T}}=\sqrt{A_{\text {det-res }}^{2} \cdot p_{T}^{2}+A_{\text {mult-scatt } .}^{2}}
$$

Element	Z	Rad. Length (expt.) [g.cm
H	1	63.04
He	2	94.32
C	6	42.7
N	7	37.99
O	8	34.24
F	9	32.93
Ne	10	28.93
Na	11	27.74
Mg	12	25.03
Al	13	24.01
Si	14	21.82
P	15	21.21
S	16	19.5
Cl	17	19.28
Ar	18	19.55
K	19	17.32
Ca	20	16.14
Ti	22	16.16
Cr	24	14.94
Fe	26	13.84
Ni	28	12.68
Cu	29	12.86
Zn	30	12.43
Ag	47	8.97
Pt	78	6.54
Au	79	6.46
Pb	82	6.37

Ideal Situation

Example:

$$
\begin{gathered}
\mathrm{P}_{\mathrm{T}}=1 \mathrm{GeV}, \ell=1 \mathrm{~m}, \mathrm{~B}=1 \mathrm{~T}, \mathrm{~N}=10, \sigma_{\mathrm{x}}=.2 \mathrm{~mm} \\
\left.\frac{\delta p_{T}}{p_{T}}\right|^{\text {det-res }}=0.5 \%
\end{gathered}
$$

Assume the detector to be filled with atmospheric pressure Argon (gas), $X_{0}=110 \mathrm{~m}$

$$
\left.\frac{\delta p_{T}}{p_{T}}\right|^{\text {mult-scat }}=0.5 \%
$$

Note: calorimeters filter ALL particles but Muons!

(Muon) p_{T} Resolution in ATLAS

In real life there are other effects that have to be included (will be discussed further)

- Detector elements are aligned with some precision that affects the measurement of the sagitta.
- Energy losses when the muon traverses the detector material.

At a p_{T} of $\sim 10 \mathrm{GeV}$ the dominant contribution is ionization loss and multiple scattering

At a p_{T} of $\sim 300 \mathrm{GeV}$ multiple scattering and detector resolution are equally important

At a p_{T} of $\sim 1 \mathrm{TeV}$ detector
resolution is most important effect

Total Resolution

Detector Resolution

Chamber Alignment

Multiple Scattering

Ionization losses

Energy Measurement in Calorimeters

- A destructive measurement: the energy is degraded through a large number of nuclear and/or EM processes in a dense medium.
- Showers; Shape of these showers depend on the material and on the type of particle being studied. \rightarrow identify!

There are two types of calorimeters:

> Convert signal into energy of primary particle \rightarrow calibration

Detector to collect signal of segment

- Homogeneous calorimeters:
- A transparent material (scintillating crystals or high density glasses emitting Cerenkov light) absorbs the energy and measure it.
- All charged particles in a shower seen \rightarrow best energy resolution.
- Uniform response in all points.
- Costly, can be hardly segmented (\rightarrow total energy, not shape).
- Used for electro-magnetic calorimeters \rightarrow electrons and photons
- Sampling:
- Sampling between dense material and detectors.
- Often sandwich type structure (absorber / detector) but also fibres.
- Limited cost, segmentation.
- However only a fraction of energy is detected \rightarrow limited resolution. $f_{\text {sampling }}=E_{\text {detected }} / E_{\text {total }}$ Generally used for hadrons

Detector to collect signal of segment

Dimensions of Calorimeters

A characteristic parameter (\rightarrow used material) determines the development of showers

- electrons/photons: Radiation Length (EM interactions)
- hadrons showers the Interaction Length (Hadronic interactions)

	Typical Length	Longitudinal Size (95\% containment)	Transverse Size (95\% containment)
EM Showers	Radiation Length $X_{0} \sim \frac{A}{Z^{2}}$ if $A \approx Z \rightarrow$ $X_{0} \sim 1 / A$	15 to $20 X_{0}$	$\sim 2 X_{0}$
Hadron Showers	interaction length $\lambda_{\text {int }} \sim A^{1 / 3}$	6 to $9 \lambda_{\text {int }}$	$1 \lambda_{\text {int }}$

$$
\lambda_{i n t} / X_{0} \approx A^{4 / 3} \rightarrow \lambda_{i n t} \gg X_{0}
$$

\rightarrow Hadron calorimeters much longer than EM calorimeters.

- The length of showers depends only logarithmically on the primary energy
- The length of calorimeters to contain showers of very different initial energies is limited

	$\lambda_{\text {int }}[\mathrm{cm}]$	$X_{0}[\mathrm{~cm}]$
Scint	79.4	42.2
LAr	83.7	14.0
Fe	16.8	1.76
Pb	17.1	0.56
U	10.5	0.32
C	38.1	18.8

The Shower Development

Simulated lateral development of showers in air

Calorimeters \& Test Beams

A calorimeter signal S measured \propto number N of nuclear interactions \propto energy E.

$$
S=\sum \text { nuclear interactions }=\alpha \cdot E
$$

$$
\alpha \text { converts the calorimeter signal into energy. } \alpha \text { has to be determined. }
$$

One method is based on test beam(s).

Beam of known particles of known energy

- You measure the proportionality constant α at different incoming energies and check if it does depend on energy (should not!) \rightarrow linearity
- You measure the spread of the signal for a given energy \rightarrow resolution

Rotating LAr EM calorimeter prototype of ATLAS

Energy Response

- The figure \rightarrow the response of a calorimeter to beam particles of different energies is linear
- The distribution of the signal at a given energy gives the 'resolution'.

The signal of a shower is linear with energy, the resolution decreases with energy

$$
\frac{\delta E}{E} \approx \frac{d N}{N} \approx \frac{\sqrt{N}}{N}=\frac{\text { const }}{\sqrt{\sqrt{E}} \quad \text { Decreases with energy }}
$$

In real life the resolution is subject to several effects and they have to be combined quadratically \rightarrow a more complex parametrisation is normally used:

$$
\begin{gathered}
\sigma_{\text {tot }}^{2}=\sigma_{\text {stat }}^{2}+\sigma_{\text {lekeage }}^{2}+\sigma_{\text {electronic noise }}^{2}+\sigma_{\text {non uniformities }}^{2} \\
\frac{\sigma_{\text {stat }}}{E}=\frac{a}{\sqrt{E}} \quad \frac{\sigma_{\text {lekeage }}}{E}=\frac{b}{\sqrt[4]{E}} \quad \frac{\sigma_{\text {electronicnoise }}}{E}=\frac{c}{E} \quad \frac{\sigma_{\text {nonuniformities }}}{E}=d
\end{gathered}
$$

Dead Material: how to Measure it?

... via photon conversion
Selection:

- Two oppositely charged tracks with рт > 0.5 GeV
- Small distance between tracks
- Good vertex; zero opening angle
- Well reconstructed tracks

Fraction of converted photons translate into radiation length

$$
\frac{X}{X_{0}}=-\frac{9}{7} \ln \left(1-F_{\text {conv }}\right)
$$

Hadronic Secondary Interactions

... via secondary vertices
Reconstruct vertices from secondary interactions ...

Remove vertices from Kaons and ^...

θ

Radiography of the Detector

TABLE 5 Evolution of the amount of material expected in the ATLAS and CMS trackers from 1994 to 2006

Date	ATLAS		CMS	
$\boldsymbol{\eta} \approx \mathbf{0}$	$\boldsymbol{\eta} \approx \mathbf{1 . 7}$	$\boldsymbol{\eta} \approx \mathbf{0}$	$\boldsymbol{\eta} \approx \mathbf{1 . 7}$	
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.35	0.35	1.50

The numbers are given in fractions of radiation lengths $\left(X / X_{0}\right)$. Note that for ATLAS, the reduction in material from 1997 to 2006 at $\eta \approx 1.7$ is due to the rerouting of pixel services from an integrated barrel tracker layout with pixel services along the barrel LAr cryostat, to an independent pixel layout with pixel services routed at much lower radius and entering a patch panel outside the acceptance of the tracker (this material appears now at $\eta \approx 3$). Note also that the numbers for CMS represent almost all the material seen by particles before entering the active part of the crystal calorimeter, whereas they do not for ATLAS, in which particles see in addition the barrel LAr cryostat and the solenoid coil (amounting to approximately $2 \mathrm{X}_{0}$ at $\eta=0$), or the end-cap LAr cryostat at the larger rapidities.

Pattern Recognition

How to find which measurements (*) (hits) make a track and have to be fitted to compute a trajectory?

(*) One possible set of track parameters:
$d_{0}, z_{0}, \phi_{0}, \vartheta_{0}, q / p$ (or tangent of the angles)

Complexity of Collider Experiments

ATLAS

In modern Experiments, already at the time the experiment is designed, you need to consider/know

- How different detectors contribute to the analysis of one single feature (=characteristic)
- How your analysis programs will solve the problem of very crowded and complex topologies
- \rightarrow it is more and more difficult to think in terms of single/isolated detectors
- \rightarrow it is more and more difficult to separate hardware and analysis programs

Ambiguities in Pattern Recognition

How to find which measurements (*) (hits) make a track and have to be fitted to compute a trajectory?
In some cases you may arrange your detector to give you an indication $\rightarrow u, v$ geometry

4 combinations!
Correct combinations

In some other cases you may have to 'score' your points

Basic Ideas in Pattern Recognition

Three tracks are defined by $\tan (\theta)$ and x_{0}

Pattern Space

They appear like this in your detector

The goal of Pattern recognition is going from Pattern Space to Feature Space

Templates are checked with increasing granularity
1.
templates: if a limited set of topologies \rightarrow create a 'road' and compare it with your measurements. A correct 'road' will include a large number of points. Works for simple and few topologies

Hough Transform

Pattern Space

(only a few shown...)

One peak \rightarrow one track

2. Hough transform.

- Join all possible pairs of points with a line characterised by $\tan (\theta)$ and x_{0}.
- each pair of hits in two dimensions becomes a line;
- real track, \rightarrow many aligned points \rightarrow same $\tan (\theta)$ and $x_{0} \rightarrow$ peak in the 'Feature Space'.
- Wrong associations ~flat distribution.
\rightarrow one peak indicates one track \rightarrow look for peaks

Track Fitting (~Old Way)

Use the least squares principle to estimate the kinematical parameters of a particle $=$ track fitting.

$$
\begin{aligned}
& \text { Definition of "Chi Squared": } \mathrm{X}^{2}=\sum_{i} \frac{\left(m_{i}-f_{p}\left(x_{i}\right)\right)^{2}}{\sigma_{i}^{2}} \\
& \text { Physical meaning: distance between fit function and hit normalised"to measurement error }
\end{aligned}
$$

- measured points $m_{i} \pm \sigma_{i}\left(\right.$ at position $\left.x_{i}\right) \hat{\mathbf{\wedge}}$ of a track have been correctly identified in the pattern recognition
step.
- trajectory of a particle is described by an analytic expression f_{p}
$>p$ is the set of parameters \rightarrow the momentum in B field is one parameter
$>f_{p}\left(x_{i}\right)$ is the coordinate predicted by the function (f might be a circle in a solenoid or a straight line)
Find the set of parameters p that minimises the X^{2}
Meaning: you find which is the trajectory which minimises the difference ${ }^{2}$ between all measurements and trajectory
Better approach: include also multiple scattering and energy losses

$$
\chi^{2}=\sum_{\text {meas }} \frac{r_{\text {meas }}^{2}}{\sigma_{\text {meas }}^{2}}+\sum_{\text {scat }}\left(\frac{\theta_{\text {scat }}^{2}}{\sigma_{\text {scat }}^{2}}+\frac{\left(\sin \theta_{\text {loc }}\right)^{2} \phi_{\text {scat }}^{2}}{\sigma_{\text {scat }}^{2}}\right)+\sum_{\text {Eloss }} \frac{(\Delta E-\overline{\Delta E})^{2}}{\sigma_{\text {Eloss }}^{2}}
$$

$$
r_{\text {meas }}^{2}=\text { residual }{ }^{2}=(\text { difference measurement }- \text { function })^{2}
$$

(~Modern) Pattern Recognition

In past experiments the track reconstruction consisted of two steps (possible in 'old’ experiments):

- Pattern recognition
- Track fit

In modern track reconstruction, finding + fitting a track at the same time no clear distinction between pattern finding and track fitting.

As a consequence, the full chain of pattern recognition and track fitting will be a single unit.
The ATLAS / CMS track finding / fitting currently consists of three sequences

1. the main inside-out track reconstruction (start with a seed defined by the beam spot and the innermost hits of the vertex detector)
2. Followed by a consecutive outside-in tracking (recover ~unused / unassigned hits)
3. As a third sequence, the pattern recognition for the finding of V_{0} vertices, kink objects due to bremsstrahlung and their associated tracks follows

Track Fitting and Kalman Filter (~ Modern Way)

The X^{2} method is not always convenient:

1. You need to have all points attributed to one track before the fit
2. It is expensive in terms of computing-time: a large number of points have to be handled in the X^{2} fit: \# measurements x \# parameters of each measurement
3. to be repeated for many tracks! $\quad N_{\text {tracks }} \cdot N_{\text {hits }} \cdot N_{\text {parameters }}$
\rightarrow use pattern recognition methods which are based on track following, where it is not clear a-priori the right hit combination

track following $==$ the path is not clear a-priori \rightarrow the direction becomes clearer as you follow the trajectory \rightarrow Kalman filter technique

The Kalman filter proceeds progressively from one measurement to the next, improving the knowledge about the trajectory with each new measurement.

With a traditional global fit, this would require a time consuming complete refit of the trajectory with each added measurement.

Kalman Filter in a Cartoon

Goal: compute X , observable using a sequence of measurements ($k=1,2 \ldots$ indicates successive measurements/states)

Kalman filter is an iterative procedure

Kalman Filters

Kalman Filter approach consists of two steps:

- The prediction step: extrapolate current trajectory (state vector) to next measurement from the \rightarrow discard noise signals and hits from other tracks.
- The transfer step, which updates the state vector

System state vector at the time k includes k-1 measurements and contains the parameters of the fitted track, given at the position of the $k^{\text {th }}$ hit (including hits before!)
The corresponding measurement errors covariance matrix (contains measurement errors) by C_{k}.
The matrix F_{k} describes the propagation of the track parameters from the $(k-1)^{\text {th }}$ to the $k^{\text {th }}$ hit.
Example: planar geometry with one dimensional measurements and straight-line tracks
$t_{x}=\tan \theta_{x}$ the track slope in the $x z$ plane,

$$
F_{k}=\text { transfer matrix }
$$

$$
x_{k}=F_{k} \cdot x_{k-1}
$$

$$
\begin{gathered}
\begin{array}{l}
\begin{array}{l}
\text { State vector } \\
@ \text { measurement } \mathrm{k}
\end{array}
\end{array} \\
\binom{x}{t_{x}} k=\left(\begin{array}{cc}
1 & z_{k}-z_{k-1} \\
0 & 1
\end{array}\right)\binom{x}{t_{x}} \quad k-1 \begin{array}{r}
\text { State vector } \\
\text { @ measurement } \mathrm{k}-1
\end{array} \\
\rightarrow x_{k}=x_{k-1}+t_{x} \cdot\left(z_{k}-z_{k-1}\right) \\
\rightarrow t_{k}=t_{x} @ k-1
\end{gathered}
$$

Propagation of States

The extrapolation from one state to another (in page before) is valid in general:

$$
x_{k}=\boxed{F_{k}} \cdot x_{k-1}
$$

The transfer matrix F_{k} transports the state x_{k-1} (at the measurement point ' $\mathrm{k}-1$ ') to the next state x_{k} at measurement point k

$$
C_{k}=F_{k} C_{k-1} F_{k}^{T}+Q_{k}
$$

- C_{k} is the error matrix extrapolated from the state x_{k-1} (generally called Covariance Matrix). It contains errors on measurements (diagonal terms) but also the correlation among different terms.

A new term appears: Q_{k} is due to 'random' perturbations to the particle trajectory (mostly) multiple scattering
\rightarrow ~exact knowledge of material distribution
Measurement k-1

1. We extrapolated the state x_{k-1} from measurement $\mathrm{k}-1$ to state x_{k} at measurement point k
2. We have to include new measurement k . The formalism is a bit complicated and can be found in reference (*)

A Kalman-Filter approach is used in modern collider esperiments

Vertices in Events Produced at LHC

The recording of one event is started by the 'trigger system' that detects 'interesting characteristics'
\rightarrow primary vertex
\rightarrow during the time window of the trigger more than one interaction takes place \rightarrow Pile-up vertices (next slide)

Collision event:

- One primary vertex from the hard inelastic collision
- Several pile-up vertices (pp interactions, superimposed to the triggered primary vertex)
- Secondary vertices are produced due to
\checkmark Decay-chain: decays of long-lived b-particles
 decaying into c-particles (tertiary vertex)
$\checkmark\left(V^{0}\right)$ Decays of neutral particles (like photon conversions into electron pairs $\gamma \rightarrow e^{+} e^{-}$)

The luminosity (\rightarrow intensity of the beams at LHC) is so high than MANY interactions occur during the same bunch crossing. ~ Only one (at most) is interesting \rightarrow hard inelastic collision)

FILTER EVENTS!

Mean Number of Interactions per Crossing

$$
\begin{aligned}
& 2015:\langle\mu\rangle=13.4 \\
& 2016:\langle\mu\rangle=25.1 \\
& 2017:\langle\mu\rangle=37.8 \\
& 2018:\langle\mu\rangle=36.1 \\
& \text { Total: }\langle\mu\rangle=33.7
\end{aligned}
$$

Time \uparrow Pile-up \uparrow

Vertex Finding and Fitting

$d_{0}^{i}=$ distance of minimum approach of track i to $3 D$ vertex " v " $\quad \sigma_{i}=$ error on d_{0}^{i}

Vertex fitting: identification of a vertex and computation of its in 3D position.
distance of minimum approach d_{0}^{i} between good quality tracks to the vertex (impact parameter).

1. Start with a seed (beam spot of interaction region)
2. Compute distances of all tracks from vertex v and weight distances with a weight computed using formula
$w_{i}\left(\chi_{i}^{2}\right)=\frac{\exp \left(-\chi_{i}^{2} / 2 T\right)}{\exp \left(-\chi_{i}^{2} / 2 T\right)+\exp \left(-\chi_{\mathrm{c}}^{2} / 2 T\right)}$.
3. Minimize

$$
\frac{1}{2} \sum_{i=1}^{n} d_{i}^{2}(\boldsymbol{v}) / \sigma_{i}^{2}
$$

and find new v
. Vertex $v_{n}=v_{n-1}$?
No \rightarrow Lower T
No improvement during last step, vertex found. Remove tracks incompatible with vertex $\left(w_{i}<0.5\right)$ and use them for a secondary vertex

EM - Calorimetry: Calibration

From electronic signals to energy: a long way

$$
\begin{aligned}
E_{\text {cell }}= & F_{\mu \mathrm{A} \rightarrow \mathrm{MeV}} \times F_{\mathrm{DAC} \rightarrow \mu \mathrm{~A}} \\
& \times \frac{1}{\frac{M \mathrm{phys}}{M \text { cali }}} \times G \times \sum_{j=1}^{\mathrm{N}_{\text {samples }}} a_{j}\left(s_{j}-p\right),
\end{aligned}
$$

- s_{j} are the digital signal digitised, measured in ADC counts

- p is the read-out electronic pedestal, measured in dedicated calibration runs;
- a_{j} weights are coefficients derived from the predicted shape of the ionisation
- The cell gain G is computed by injecting a known calibration signal and reconstructing the corresponding cell response. (equalise response)
- The factor $\mathrm{M}_{\text {phys }} / \mathrm{M}_{\text {cali }}$ quantifies the ratio of the maxima of the physical and calibration pulses
- The factor $\mathrm{F}_{\mathrm{DAC} \rightarrow \mathrm{AA}}$ converts digital-to-analog converter (DAC) counts set on the calibration board to a current in $\mu \mathrm{A}$;
- The factor $F_{\mu A \rightarrow M e V}$ converts the ionisation current to the total deposited energy at the EM scale and is determined from test-beam studies.
corresponding to the same input current, corrects
the gain factor G obtained with the calibration pulses to adapt it to physics-induced signals;

Calibration pulses and physical pulses are different

Hadron Calorimetry (example: ATLAS)

Figure 13: The signal paths for each of the three calibration systems used by the TileCal. The physics signal is denoted by the thick solid line and the path taken by each of the calibration systems is shown with dashed lines.

EM - Calorimetry: Absolute Calibration

Z and J / Ψ decays to a pair of $\mathrm{e}^{+} \mathrm{e}^{-}$can be used to verify and adjust the calibration of EM calorimeters (but use also $\mathrm{W} \rightarrow \mathrm{ev}$):
Well known! $m_{Z, J / \psi}^{2}=\left(E_{e^{+}}+E_{e^{-}}\right)^{2}-\left(\vec{p}_{e^{+}}+\vec{p}_{e^{-}}\right)^{2}=f\left(E_{e^{+}}, E_{e^{-}}\right) \rightarrow$
Find the transformation (simple example: $E^{\text {corrected }}=\boldsymbol{a} \cdot E$), of the two energies that which gives the

- Correct mass of Z and J/ Ψ
- Gives the narrowest invariant mass distribution

Use large samples of events \rightarrow (and verify if the response is constant in different η, ϕ regions (Also adjust MC!).

Hadron Calorimeters: Absolute Callibration

In EM calorimeters decays to Z and J / Ψ to $\mathrm{e}^{ \pm}$to check reconstruction.
Hadron Calorimeters: two approaches are used.

- Use cosmic muons: single isolated muons (from cosmic muons or Z / W decays), measure
energy deposited/path length
- Use single isolated charged hadrons, require a signal compatible with a minimum ionizing particle in the electromagnetic calorimeter in front of the hadron calorimeter was required (shower starts in Hadron Calorimeter) measure

(Topological) Clusters in Calorimeters

Cells in calorimeters \rightarrow Clusters of energy deposition

- Identify 'starting' cells (seeds) with energy measurements $E_{\text {deposition }}>4 \cdot \sigma_{\text {noise }}$
- Associate more cells laterally and longitudinally in two steps
\checkmark add all adjacent cells with energy measurements $E_{\text {deposition }}>2 \cdot \sigma_{\text {noise }}$
\checkmark add all adjacent cells with energy measurements $E_{\text {deposition }}>\sigma_{\text {noise }}$
$\sigma_{\text {noise }}$ is the threshold electronic signal that indicates
a significant $E_{\text {deposition }}$
- Split two local energy maxima into separate clusters

$$
\left|E_{\text {cell }}^{\mathrm{EM}}\right|>4 \sigma_{\text {noise,cell }}^{\mathrm{EM}}
$$

ATLAS simulation 2010

$\left|E_{\text {cell }}^{\mathrm{EM}}\right|>2 \sigma_{\text {noise,cell }}^{\mathrm{EM}}$
$\left|E_{\text {cell }}^{\mathrm{EM}}\right|>0 \sigma_{\text {noise,cell }}^{\mathrm{EM}}$

Comments to Topo-Clusters

The topological clustering algorithm employed in ATLAS is not designed to separate energy deposits from different particles, but rather to separate continuous energy showers of different nature, i.e. electromagnetic and hadronic, and also to suppress noise.

Few comments:

- A large fraction of low-energy particles are unable to seed their own clusters: In the central barrel 25% of 1 GeV charged pions do not seed their own cluster.
- They are initially calibrated to the electromagnetic scale (EM scale) to give the same response for electromagnetic showers from electrons or photons.
- Hadronic interactions produce responses that are lower than the EM scale, by amounts depending on where the showers develop.
- To account for this, the mean ratio of the energy deposited by a particle to the momentum of the particle is determined based on the position of the particle's shower in the detector. A local cluster (LC) weighting scheme is used to calibrate hadronic clusters to the correct scale.
- \rightarrow Further development is needed to combine this with particle flow

Split Showers in ECAL and HCAL Calorimeters

Hadrons may deposit energy in both Electromagnetic calorimeters (ECAL) and Hadron calorimeters (HCAL).

Conversion factors $E_{\text {deposition }} \rightarrow$ True Energy are different for ECAL \& HCAL and depend on particle type, position, true energy

$$
\rightarrow E_{\text {calibrated }}=a+b(E) f(\eta) E_{E C A L}+c(E) g(\eta) E_{H C A L}
$$

- $E_{\text {calibrated }}$ is the 'real particle energy'
- $E_{E C A L}$ and $E_{H C A L}$ are the energies measured in the ECAL and the HCAL
- a accounts for energy lost because of $\sigma_{\text {noise }}$ threshold
- $b(E)$ and $c(E)$ are conversion factors
- $f(\eta)$ and $g(\eta)$ correct energy in different η regions $\chi^{2}=\sum_{i=1}^{N} \frac{\left(E_{i}^{\text {calib }}-E_{i}\right)^{2}}{\sigma_{i}^{2}}$,

These parameters have to be determined from data: use

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left(E_{i}^{\text {calib }}-E_{i}\right)^{2}}{\sigma_{i}^{2}},
$$

- Simulated data: true energy (MC ! $)$ is taken as $E_{\text {calibrated }}$
- Large samples of isolated charged showers: the momentum reconstruction is taken as $E_{\text {calibrated }}$

In a first pass, the functions $f(\eta)$ and $g(\eta)$ are fixed to unity.

Results: $\left(E_{\text {calibrated }}=a+b(E) f(\eta) E_{E C A L}+c(E) g(\eta) E_{H C A L}\right)$

Calibration coefficients vs energy E, for hadrons

- HCAL only (blue triangles),
- ECAL and HCAL, for
\checkmark the ECAL (red circles) and
\checkmark for the HCAL (green squares)

Single isolated hadrons:

- Relative raw (blue) and calibrated (red) energy response (dashed curves and triangles)
- resolution (full curves and circles)

Muon Reconstruction at LHC

Issue	ATLAS	CMS
Design	Air-core toroid magnets Standalone muon reconstruction	Flux return instrumented Tracks point back to collision point
Barrel Tracking	Drift tubes Precision: $\sim 80-120 \mu \mathrm{~m}$	Drift tubes Precision: 100-500 $\mu \mathrm{m}$
End-cap Tracking	Cathode strip chambers High rate capability	Cathode strip chambers High rate capability
Barrel Trigger	Resistive plate chambers Fast response [5 ns]	Resistive plate chambers Fast response [5 ns]
End-cap Trigger	Thin gap chambers Fast response, high rates	

Muon Reconstruction in ATLAS

Muons

- are filtered by calorimeters
- Seen in the Inner detector and in the muon spectrometer.
- These two tracks have to be associated @ reference plane
- The momentum has to be computed by combining the two associated tracks + account the energy lost in calorimeters

Very high energy muons (close to 1 TeV) may shower like electrons, these cases are called "catastrophic energy losses"

Different types (== different reconstructions)

- Combined: ID + MS + full track refit. Main reconstruction type
- Stand-alone (SA): MS-only track with identification and reconstruction. Recovers muons for $|\eta|>2.5$
- Segment-tagged: one ID track is associated to one segment of track measured in the MS (incomplete MS track)
- CaloTag: charged track in the ID associated to an energy deposition of a minimum ionizing particle in the calorimeter. Low energy muons that do not penetrate up to the MS

Muon Reconstruction in CMS

The momentum of muons is measured both in the inner tracker and in the muon spectrometer. There are three different muon types:

- standalone muon. Hits in the muon spectrometer only are used to form muon segments that are combined in a track describing the muon trajectory. The result of the final fitting is called a standalone-muon track.
- global muon. Each standalone-muon track is matched (if possible!) to a track in the inner tracker if the parameters of the two tracks propagated onto a common surface are compatible. The hits from the inner track and from the standalone-muon track are combined and fit to form a global-muon track. At large transverse momenta, $\mathrm{p}_{\top}>200$ GeV, the global-muon fit improves the momentum resolution with respect to the tracker-only fit.
- tracker muon. Each inner track with p_{T} larger than 0.5 GeV and a total momentum p in excess of 2.5 GeV is extrapolated to the muon system. If at least one muon segment matches the extrapolated track, the inner track is defined as a tracker muon track.

About 99\% of the muons produced within the geometrical acceptance of the muon system are reconstructed either as a global muon or a tracker muon and very often as both. Global muons and tracker muons that share the same inner track are merged into a single candidate. Muons reconstructed only as standalone-muon tracks have worse momentum resolution and are contaminated by cosmic. Charged hadrons may be mis-reconstructed as muons if some part of the hadron shower reach the muon system (punch-through).

Muon p_{T} Resolution in ATLAS

Combining ID + MS improves resolution always.

Effect is mostly visible at low p_{T} values $\sim 10 \mathrm{GeV}$ where a factor of two is gained in resolution

At high $\mathrm{p}_{\mathrm{T}}(\sim 1 \mathrm{TeV})$ the resolution mostly comes from the MS

Tag \& Probe Method

How to check the reconstruction efficiency of muons?

$$
S F=\frac{\varepsilon^{\text {Data }}(\text { Type })}{\varepsilon^{\mathrm{MC}}(\text { Type })}
$$

The measurement of the muon reconstruction efficiency is done using well known resonances:

1. A combined muo "Tag"

Tag, Muon = real muon
2. the tag is paired with an ID track giving an invariant mass close to the considered resonance mass
3. the fraction of reconstructed signal "Probes" measures the muon identification efficiency

Particle Flow: Basic Idea

Parametrisation of the relative resolution of

- calorimeters and
- P_{T} measured in the Inner Detector

$$
\frac{\sigma(E)}{E}=\frac{50 \%}{\sqrt{E}} \oplus 3.4 \% \oplus \frac{1 \%}{E}, \text { Calorimeters }
$$

$$
\sigma\left(\frac{1}{p_{\mathrm{T}}}\right) \cdot p_{\mathrm{T}}=0.036 \% \cdot p_{\mathrm{T}} \oplus 1.3 \%, \text { Inner Detector }
$$

\rightarrow For low-energy charged particles, the momentum resolution of the tracker is significantly better than the energy resolution of the calorimeter.

Problem \#1

A charged particle is measured in trackers $\left(\mathrm{p}_{\mathrm{T}}\right)$ and in calorimeters (ECAL $\&$ HCAL) \rightarrow avoid double-counting its energy \rightarrow associate tracks and showers \rightarrow choose only one!

Problem \#2

Showers are often superimposed \rightarrow subtract a part of the energy deposition

Particle Flow (~Jets): basic idea

Why Particle Flow (PF)?

Two possibilities to reconstructed the topology (*) of one event

- Use calorimeters: they are sensitive to ALL particles, charged, neutral, photons hadrons, (partly) muons. BUT the energy resolution ~not very good at ~low/medium energies
- use PF: t gives an optimal use of measurements: when you have two independent measurements of the same particle \rightarrow take the best!

(*) Topology = general characteristics of the event, like \# of jets

Particle Flow: Advantages \& Disadvantages

- Particles below detection threshold;
- $\quad \sigma_{\text {direction }}^{\text {Tracker }} \ll \sigma_{\text {directioneter }}^{\text {Calorimet }}$
- Low- p_{T} tracks in a jet are swept out of the jet cone by the magnetic
- \rightarrow use track's coordinates at the IP \rightarrow these particles are recovered into the jet.
- pile-up interactions: distinguish primary vertex from pile-up vertices

For each charged particle

Do not remove any energy deposited by neutral particles.

The Particle Flow Algorithm

Before applying PF Algorithm it is necessary to know how much energy $<\mathrm{E}_{\text {dep }}>$ a particle with measured momentum $\mathrm{p}_{\mathrm{trk}}$ deposits on average in calorimeters. This is needed to correctly subtract the energy from the calorimeter for a particle whose track has been reconstructed. This is done using the expression

$$
\left\langle E_{\text {dep }}\right\rangle=p^{\text {trk }} \cdot\left\langle E_{r e f}^{c l u s} / p_{r e f}^{\text {trk }}\right\rangle
$$

The value $\left\langle E_{r e f}^{c l u s} / p_{r e f}^{t r k}\right\rangle$ (which is also a measure of the mean response) is determined using single-particle samples without pile-up by summing the energies of topo-clusters in a R cone of size 0.4 around the track position, extrapolated to the EM calorimeter. This cone size is large enough to entirely capture the energy of the majority of particle showers. The subscript 'ref' indicates values $\left\langle E_{r e f}^{c l u s} / p_{r e f}^{t r k}\right\rangle$ determined from single-pion samples.

The PF algorithm is skematically shown below

Particle Flow in One Cartoon

PF in CMS, one Event

The K_{0}^{L}, the π^{-}, and the two photons from the π^{0} decay are detected as four well-separated ECAL clusters denoted E1,2,3,4. The π^{+}does not create a cluster in the ECAL. The two charged pions are reconstructed as charged-particle tracks T1,2, appearing as vertical solid lines in the (η, φ) views and circular arcs in the (x, y) view. These tracks point towards two HCAL clusters H1,2 cluster positions are represented by dots, the simulated particles by dashed lines, and the positions of their impacts on the calorimeter surfaces by various open markers.

Subtracting Calorimeter Cells

- Important parameter: the ratio $E_{\text {calorimeter }} / p^{t r k} \rightarrow$ rings around the extrapolated track
- Remove rings if $E_{c l}>p^{t r k}$

EMB2 \& EMB3 two calorimeter layers

Particle Flow in Action: Example

- The red cells are from the π^{+},
- the green cells energy from the photons from the π^{0} decay
- the dotted lines represent the borders of the calorimeter-cluster

Jets: Introduction

Jets are a collection of 'close by' objects that reflect the initial parton \rightarrow try to reconstruct the momentum of the initial parton

Construction of jets:

- Before Particle Flow \rightarrow calorimeters
- After Particle Flow \rightarrow the best defined object between with track or calorimeter cluster

Jets (What \& How?)

Iterative cone algorithms: Jet detined as energy tlow within a cone of radius R in (η, ϕ) space:

$$
R=\sqrt{\left(\eta-\eta_{0}\right)^{2}+\left(\Phi-\Phi_{0}\right)^{2}}
$$

Step 1:

- Start with most energetic energy deposition
- Define distance measure $d_{i j}$
- Calculate dij for all pairs of objects ...
- Combine particles with minimum dij below cut ...
- Stop if minimum dij above cut ...

Limit: all 'distances' count the same! \rightarrow weight using momentum or energy

Step 3:

Jets, Different Algorithms, see reference(*)

The definition of distance is very important: the formula below if most used today. NOTE the parameter ' p ' in $k_{t, i}^{2 p}$.

- $k_{t, i}$ is the transverse momentum of particle i
- $\Delta_{i j}^{2}=\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\varphi_{i}-\varphi_{j}\right)^{2}$

$$
d_{i j}^{\prime}=\operatorname{distance}^{\prime}=\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}}
$$

R^{2} is a parameter of the algorithm \rightarrow opening of the cone

If $p=0$ you have the so-called Cambridge/Aachen algorithm

$$
d_{i j}=\min \left(k_{t, i}^{2 p}, k_{t, j}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}} \rightarrow \mathrm{~d}_{\mathrm{ij}}=\frac{\Delta_{\mathrm{ij}}^{2}}{\mathrm{R}^{2}}
$$

If $p=1$ you have the so-called K_{T} algorithm

$$
d_{i j}=\min \left(k_{t, i}^{2}, k_{t, j}^{2}\right) \frac{\Delta_{i j}^{2}}{R^{2}}
$$

If $p=-1$ you have the so-called anti K_{T} algorithm
Object $\mathrm{j}: \mathrm{k}_{\mathrm{f}}$, $\phi_{\mathrm{j}}, \eta_{\mathrm{j}}$

$$
d_{i j}=\min \left(\frac{1}{k_{t, i}^{2}}, \frac{1}{k_{t, j}^{2}}\right) \frac{\Delta_{i j}^{2}}{R^{2}}
$$

(*) Cacciari et al. https://arxiv.org/pdf/0802.1189

k_{T} and anti- k_{T} Jet Algorithms

neglect case with $\mathrm{p}=0$, only of historical interest, does not contain any dependence on $\mathrm{E} / \mathrm{p} / \mathrm{p}_{\mathrm{T}}$
$\Delta_{i j}^{2}=\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\varphi_{i}-\varphi_{j}\right)^{2}$ Δ_{ij}^{2} are $\sim \operatorname{simlar}$

$$
\mathrm{p}_{\mathrm{T}}: 1>2>3
$$

Anti k_{T} is most used, most
η

$\mathrm{k}_{\mathrm{T}} \quad \mathrm{d}_{\mathrm{ij}}=\min \left(\mathrm{k}_{\mathrm{t}, \mathrm{i}}^{2}, \mathrm{k}_{\mathrm{t}, \mathrm{j}}^{2}\right) \frac{\Delta_{\mathrm{ij}}^{2}}{\mathrm{R}^{2}}$
Anti $\mathrm{k}_{\mathrm{T}} \quad \mathrm{d}_{\mathrm{ij}}=\min \left(\frac{1}{\mathrm{k}_{\mathrm{t}, \mathrm{i}}^{2}}, \frac{1}{\mathrm{k}_{\mathrm{t}, \mathrm{j}}^{2}} \frac{\Delta_{\mathrm{ij}}^{2}}{\mathrm{R}^{2}} \quad \mathrm{~d}_{13}<\mathrm{d}_{23}<\mathrm{d}_{32}\right.$

Distance $\sim\left(p_{T}\right)^{2} \rightarrow$ cluster around the particle with smallest $\mathrm{p}_{\mathrm{T}} \rightarrow$ particle 3

Distance $\sim\left(1 / p_{T}\right)^{2} \rightarrow$ cluster around the particle with highest $\mathrm{p}_{\mathrm{T}} \rightarrow$ particle 1

Jet Shapes in Different Algorithms

Simulated events: 3 partons + large number of ghosts

In the anti-kT jet reconstruction algorithm, are all circular

How to Calibrate a Jet?

Relative methods [Inter-calibration]

One CMS Example

Absolute Method Uses p_{t} balance in back-to-back photon+jet events

Missing Transverse Energy E_{T}

It is ONLY in the transverse plane that p_{T} is conserved (at hadron colliders)
$\sum_{\text {All particles }} p_{T}=0 . \sum_{\text {All particles }} p_{l}=$? $\left(x_{1}, x_{2}\right.$ unknown!)

$$
\vec{E}_{T}^{m i s s}=-\Sigma_{i} \vec{E}_{T}^{i} \quad \overrightarrow{E_{T}^{m i s s}}=-\sum_{i} \overrightarrow{E_{T}^{i}}
$$

missing transverse energy = minus the vector sum of the transverse energy deposits. It is a proxy of the energy carried away from undetected particles.
\rightarrow W bosons, top quark events and supersymmetric particle searches (with neutrinos or neutrinos-like particles in the decay channels).

Another important quantity that is often referred to is the total transverse energy, which is the scalar sum of the transverse energy deposits:

$$
\sum E_{T}=\sum_{i} E_{T}^{i}
$$

The missing transverse energy and the total energy measurements are calculated using objects from

Particle Flow

ATLAS \& CMS in 2 Words

ATLAS: To reconstruct $E_{T}^{\text {miss }}$, fully calibrated electrons, muons, photons, hadronically decaying τ-leptons, and jets, reconstructed from calorimeter energy deposits, and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various $E_{T}^{m i s s}$ contributions

CMS: The optimal response and resolution of $E_{T}^{m i s s}$ can be obtained using a global particle-flow reconstruction. The particle-flow technique reconstructs a complete, unique list of particles (PF particles) in each event using an optimized combination of information from all CMS subdetector systems. Reconstructed and identified particles include muons, electrons (with associated bremsstrahlung photons), photons (including conversions in the tracker volume), and charged and neutral hadrons. Particle-flow jets (PF Jets) are constructed from PF particles.

Computing MET

MET implies

- Different objects are used \rightarrow many different corrections
- Avoid double counting (\rightarrow PF algorithm)

MET \& Pile-Up \& Soft Terms

MET is affected by pile-up

- Tracks can be associated to vertices
- Energy depositions in calorimeters cannot be associated to vertices

Compute the ratio Jet Vertex Fraction for each jet:

$$
J V F=\sum_{\text {tracks }, P V} p_{T} / \sum_{\text {tracks }} p_{T}
$$

How much total momentum of a jet does not come from the PV?
Remove Jets with JVF < cut

Soft Term = un-associated $\mathrm{E}_{\text {dep }} \mathrm{s}$ in calorimeters
Methods developed to remove Soft term

$E_{T}^{m i s s}$ Resolution in ATLAS \& CMS

Study the ($\left.\mathrm{E}_{\text {miss }}\right)_{x, y}$ distribution for a sample of "minimum bias events" (expected to have no real $E_{T}^{m i s s}$).
Use events with one Z boson or an isolated γ (converting!) is present. These events are produced in collisions

- $q 9 \rightarrow q \gamma$,
- qq $\rightarrow Z$,
- $q g \rightarrow q Z$, and
- $q^{-} q \rightarrow \gamma$.
$E_{T}^{m i s s} \sim 0$. is in these events
- remove objects from the Z, γ decay/conversion
- $E_{T}^{m i s s} \sim E_{T}^{Z, \gamma}$
- Compare the momenta of the well-measured boson to the $E_{T}^{\text {miss }}$

A study of the performance gives: $\sigma\left(\mathrm{E}_{\text {miss }}\right)=37 \% / \sqrt{\sum E}$ for ATLAS and $\sigma\left(\mathrm{E}_{\text {miss }}\right)=45 \% / \sqrt{\sum E}$ for CMS.

The two results are ~similar, some of the PFs approaches used in CMS also used in clustering algorithms in ATLAS

Use of Simulation in Data Analysis

Use of Simulation in Data Analysis

The Reason Why we Need Monte Carlo Events

The way to a cross section measurement (real life)

- Identify a measurement you are interested in (call it "signal"), understand its topology and kinematics
- Identify possible "background" processes with similar topology and kinematics (in general $N_{b} \gg N_{s}$)
- Identify a possible selection that produces a sample of events rich in signal and poor in background events \rightarrow Magnify your signal over background
- Apply the selection and count events

$\sigma=\frac{N_{\text {Signal Events }}}{\mathcal{L}}$	Ideal expression
$\sigma=\frac{N_{\text {selected }}-N_{\text {background }}}{\mathcal{L} \cdot \text { efficiency }}$	More realistic expression
$\sigma=\frac{N_{\text {selected }}-N_{\text {background }}}{\mathcal{L} \cdot \varepsilon_{\text {trigger }} \cdot \varepsilon_{\text {selection }} \cdot \text { Acceptance }}$	Realistic expression

$$
\sigma=\frac{N_{\text {selected }}-N_{\text {background }}}{\mathcal{L} \cdot \varepsilon_{\text {trigger }} \cdot \varepsilon_{\text {selection }} \cdot \text { Acceptance }}
$$

Of Monte Carlo Events in Analysis

- $\sigma^{\text {signal }}$ is the cross section of the interaction you want to study
- \mathcal{L} is the total luminosity you have collected
- $N_{\text {total }}^{\text {signal }}$ is the number of signal events with cross section σ
- $N_{\text {selected }}$ is the number of events at the end of you analysis (signal + background!)
- $N_{\text {background }}$ is the number of background events at the end of you analysis. How to evaluate them?
- Data have been collected using a trigger. All triggers have inefficiencies \rightarrow trigger efficiency $\varepsilon_{\text {trigger }}$
- To improve the visibility of your signal over background you apply selection cuts \rightarrow only a fraction of events survive $\varepsilon_{\text {selection }}$
- Your detector is NOT really hermetic, there are holes, cracks, non-instrumented zones \rightarrow only a fraction of events are in the sensitive region of your experiment \rightarrow Acceptance

Of Monte Carlo Events in Analysis

Of Monte Carlo Events in Analysis

NB: the Monte Carlo is

- almost always 'optimistic' \rightarrow material, resolution, efficiency
- Mitigate 'optimism': add additional smearing: if the resolution is too good add a gaussian random number with appropriate characteristics every measurement

The p_{T} of a track in your simulated event

Control Regions (2D cartoon)

- Signal Region (SR) contains events we want to select, Control Regions are close to SR but ortogonal. Need to have no correlation between \qquad You choose them to be mostly populated by the background you want to control
- SR: Lepton quality \& trigger match \& $\mathrm{E}_{T}{ }^{\text {miss }}>25 \mathrm{GeV}$ \& $\mathrm{m}_{T}>50 \mathrm{GeV}$ \& lepton isolation \& Overlap Removal (OR)

Extrapolation

Background from heavy flavours decays and (for electrons) photon conversions determined using a "data-driven" technique.

Material

CERN School 2017: Rende Steerenberg: Hadron Accelerators-1
CERN School 2017: Rende Steerenberg: Hadron Accelerators-2
The Physics of Particle Detectors
M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Passage of particles through matter, pages 446-460
Particle detectors at accelerators, pages 461-495

Books

1. Sylvie Braibant, Paolo Giacomelli, Maurizio Spurio: Particles and Fundamental Interactions, An Introduction to Particle Physics. Springer
2. DetectorsTokyo.pdf
3. Particle-detectors.pdf
4. Detectors-Full.pdf

End of Detectors

Particle Physics
Toni Baroncelli

[^0]: * No longer in service
 ${ }^{* *}$ Conceptual design in future
 \dagger EM calorimeter is inside solenoid, so small X / X_{0} is not a goal

